

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-24/0389 of 2024/09/18

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

SPIT TAPCON 5 XTREM

Product family to which the above construction product belongs:

Mechanical fasteners for use in cracked and uncracked

concrete

Manufacturer: SPIT SAS

150 Avenue de Lyon – BP 104 26501 Bourg-Les-Valence Cedex

France

Manufacturing plant: SPIT SAS

150 Avenue de Lyon – BP 104 26501 Bourg-Les-Valence Cedex

France

This European Technical Assessment contains:

19 pages including 13 annexes which form an integral

part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:

EAD 330747-00-0601; Fasteners for use in concrete for redundant non-structural systems

Note:

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product

The SPIT concrete screw TAPCON 5 XTREM is an anchor made of zinc plated steel. The concrete screw comes in size 6 with an embedment depth of 35 mm or 55 mm. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterized by mechanical interlock in the special thread.

The product description is given in Annex A and the intended use specifications of the concrete screw are detailed in Annex B.

2 Specification of the intended use(s) in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Characteristic Assessment of characteristic

3.2 Safety in case of fire (BWR2)

Reaction to fire Class A1

Resistance to fire

Fire resistance to steel failure (tension load)

Annex C

Fire resistance to pull-out failure (tension load)

Annex C

Fire resistance to steel failure (shear load)

Annex C

3.3 Hygiene, health and the environment (BWR3)

Content, emission and/or release of dangerous

substances

No performance assessed

3.4 Safety and accessibility in use (BWR4)

Characteristic resistance to tension load (static and quasi-static loading)

Resistance to steel failure Annex C

Resistance to pull-out failure Annex C

Resistance to concrete cone failure

Annex C

Robustness Annex C

Minimum edge distance and spacing

Annex B

Edge distance to prevent splitting under load Annex B

Characteristic resistance to shear load (static and quasi-static loading)

Resistance to steel failure under shear load Annex C

Resistance to pry-out failure Annex C

Resistance to concrete edge failure Annex C

Characteristic resistance for all load directions and modes of failure for simplified design

Characteristic resistance Annex C

Durability

Durability Annex B

See additional information in section 3.9

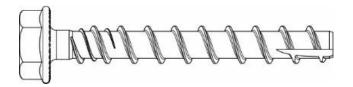
3.9 General aspects related to the performance of the product

The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

4 Assessment and verification of constancy of performance (AVCP) (hereinafter AVCP) system applied, with reference to its legal base.

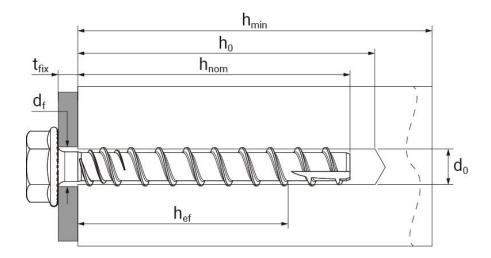
4.1 AVCP system

In accordance with European Assessment Documents EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC]. The system to be applied is: 2+


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2024-09-18 by


Thomas Bruun Managing Director, ETA-Danmark

SPIT TAPCON 5 XTREM

Installed condition in concrete

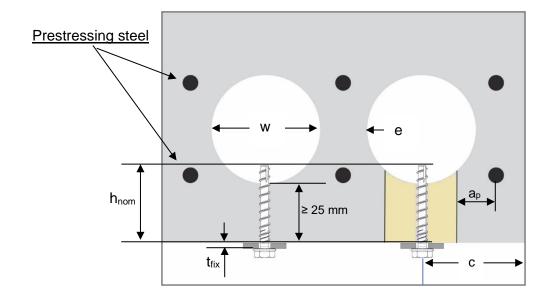
e.g. SPIT TAPCON 5 XTREM concrete screw, with hexagon head and fixture

h_{min} : Minimum thickness of member d₀ : Nominal drill hole diameter

h₀ : Drill hole depth

 $\begin{array}{ll} d_f & : \mbox{ Clearance hole diameter} \\ h_{nom} & : \mbox{ Nominal embedment depth} \\ h_{ef} & : \mbox{ Effective embedment depth} \end{array}$

 t_{fix} : Thickness of fixture


SPII	IAP	CON	5 X	IKEM

Product description

Installation condition in concrete

Annex A1

Installed condition in precast prestressed hollow core slabs

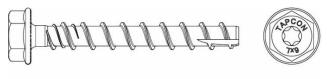
w : Core width e : Web thickness $w/e \le 4,2$

h_{nom}: Nominal embedment depth

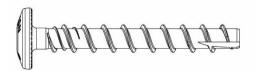
t_{fix} : Thickness of fixture

c : Minimum edge distance ≥ 100mm

a_p : Distance between anchor position and prestressing steel ≥ 50mm

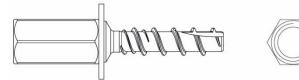

SPIT TAPCON 5 XTREM

Product description


Installation condition in precast prestressed hollow core slabs

Annex A2

Product versions



HFL Version with washer Hexagon head SW13 and TORX drive30 e.g. TAPCON 5 XTREM HFL 6x80

DOME Version with large pan head TORX drive 30 e.g. TAPCON 5 XTREM DOME 6x60

ROD Version Hexagon drive SW13 e.g. TAPCON 5 XTREM ROD 6x55 M8/M10

Marking:

Designation: TAPCON

Screw size: 6Screw length: 80

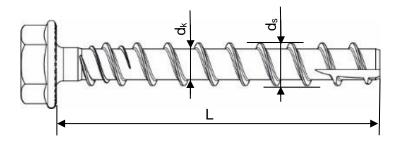

Material

Table A1: Material

Product name	Material
TAPCON 5 XTREM	Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2022

Annex A3

Dimensions

Table A2 : Dimension

Fastener size TAF	6		
Screw length	≤L	[mm]	100
Core diameter	d _k	[mm]	5,8
Thread outer diameter	ds	[mm]	8,0

SPIT TAPCON 5 XTREM	
Product description Dimensions	Annex A4

Specification of Intended use

Anchorages subject to:

- Static and quasi static loads
- Fire exposure in concrete
- Fire exposure in hollow concrete slabs
- Used only for multiple use for redundant non-structural systems according to EAD 330747-00-0601, EN 1992-4:2018

Base materials:

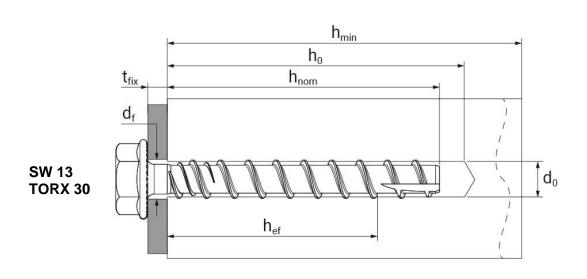
- Compacted reinforced and unreinforced concrete without fibres of concrete Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Cracked or uncracked concrete.
- Prestressed hollow core slabs with w/e ≤ 4,2, and strength classes C45/55 to C50/60

Use conditions (Environmental conditions):

Concrete screws subject to dry internal conditions: all screw types.

Design:

- Anchorages are designed in accordance with EN 1992-4: 2018 and EOTA Technical Report TR 055
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

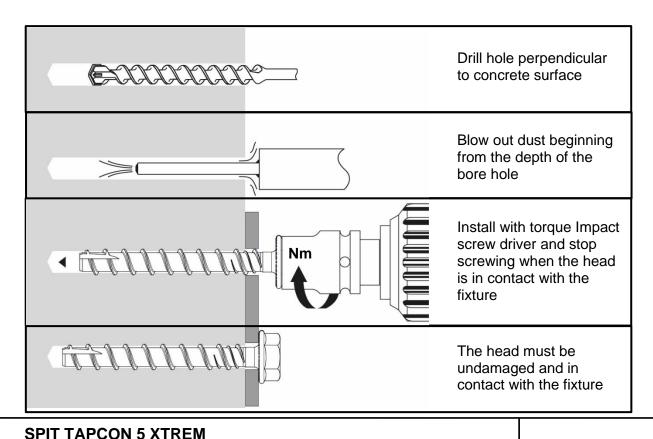

Installation:

- Hammer drilling only
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible.
- The head of the anchor is supported in the fixture and is not damaged

SPIT TAPCON 5 XTREM	
Intended use	Annex B1
Specification	

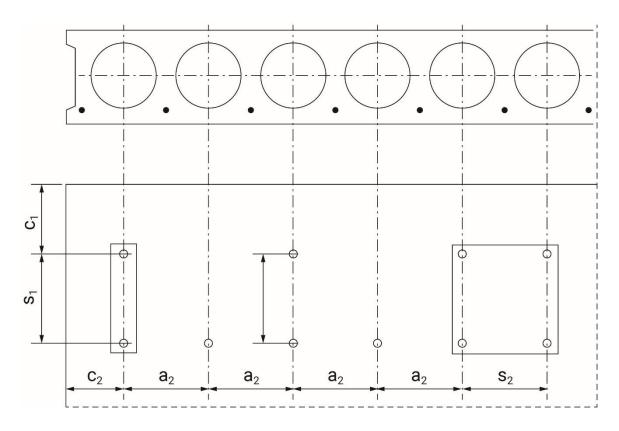
Table B1: Setting data in concrete for TAPCON 5 XTREM

Fastener size TAPCON 5 XTREM			6						
Туре			HFL	DOME	ROD	HFL	DOME	ROD	
h _{nom}		h _{nom}	h _{nom1}			h _{nom2}			
Nominal embedment de	pm	[mm]	35			55			
Nominal drill hole diameter	d_0	[mm]	6						
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40						
Drill hole depth	h₀ ≥	[mm]		40			65		
Clearance hole diameter	d _f ≤	[mm]			ę)			
Wrench size	SW	[mm]	13 - 13			13	-	13	
Torx Size	TX	[-]	30 30 -			30	30	-	
Torque impact screw driver (Max. torque according to manufacturer's instructions) [Nm]		[Nm]	160			210			


SPIT TAPCON 5 XTREM	
Intended use Installation parameters	Annex B2

Installation parameters for anchorages in concrete

Table B2: Minimum thickness of member, minimum edge distance and minimum spacing in concrete


Fastener size TAPCON 5 XTREM			6		
I NOMINAL EMBERMENT MEDIN		h _{nom1}	h _{nom1}	h _{nom2}	
		[mm]	35	55	
Minimum thickness of member h _{min}		[mm]	80	100	
Minimum edge distance C _{min}		[mm]	35	40	
Minimum spacing s _{min}		[mm]	35	40	

Installation Instructions in concrete

Intended use Installation instructions for anchorages in concrete Annex B3

Installation parameters for anchorages in precast prestressed hollow core slabs

c₁, c₂ : Edge distance

s₁, s₂ : Anchor spacing

a₁, a₂ : Distance between anchor groups

Table B3: Limiting distances for application in precast prestressed hollow core slabs

Distances for application in precast prestressed hollow core slabs					
Minimum edge distance	C _{min}	[mm]	≥ 100		
Minimum anchor spacing	S _{min}	[mm]	≥ 200		
Minimum distance between anchor groups	a _{min}	[mm]	≥ 100		
Distance of prestressing steel	Ip	[mm]	≥ 100		
Distance between anchor position and prestressing steel	a _p	[mm]	≥ 50		

SPIT TAPCON 5 XTREM	
Intended use	Annex B4
Installation parameters for anchorages	
in precast prestressed hollow slabs	

Installation Instructions in prestressed hollow core slabs ≥ 100 mm Use rebar detector Mark rebar and borehole position Drill hole perpendicular to concrete surface Blow out dust beginning from the depth of the bore hole Install with torque impact screw driver and stop screwing when the head is in contact with the fixture The head must be undamaged and in contact with the fixture **SPIT TAPCON 5 XTREM** Intended use Annex B5 Installation instructions for anchorages in precast prestressed hollow slabs

Table C1: Characteristic values for static and quasi-static loading

Fastener size TAPCON 5 XTREM HFL / DOME / ROD				6		
Nominal embedm		h _{nom}	h _{nom1}	h _{nom2}		
Norminal embedin	ені аерін		[mm]	35	55	
Steel failure for t	tension and shea	r loading				
Characteristic ten	sion load	$N_{Rk,s}$	[kN]	23	3,6	
Partial factor tens	ion load	γMs,N	[-]	1,	,4	
Characteristic she	ear load	$V_{Rk,s}$	[kN]	3,4	8,5	
Partial factor shea	ar load	γMs,V	[-]	1,	,5	
Ductility factor		k ₇	[-]	0,9	98	
Characteristic ber	nding load	M^0 Rk,s	[Nm]	22	2,9	
Pull-out failure						
Characteristic ten uncracked concre		N _{Rk,p}	[kN]	5,0	12,0	
	C25/30			1,10	1,08	
Increasing	C30/37	\		1,19	1,14	
factor for N _{Rk,p,}	C40/50	$ \Psi_{c}$	[-]	1,34	1,26	
7.	C50/60			1,47	1,35	
Characteristic tension load in cracked concrete C20/25		$N_{Rk,p}$	[kN]	3,0	10,0	
	C25/30		[-]	1,05	1,02	
Increasing	C30/37			1,09	1,03	
factor for N _{Rk,p}	C40/50	Ψ _c		1,16	1,06	
	C50/60			1,21	1,08	
Installation safety	factor	γinst	[-]	1,2	1,2	
	ailure and splittin			·	•	
Effective embedm		h _{ef}	[mm]	27,3	44,3	
	cracked	k _{cr,N}	[-]	7,	7	
k-factor	uncracked	k _{ucr,N}	[-]	11	,0	
Concrete cone	spacing	Scr,N	[mm]	3	h _{ef}	
failure	edge distance	Ccr,N	[mm]	1,5	h _{ef}	
	Resistance	N ⁰ Rk,sp	[kN]	$N_{Rk,p}$	$N_{Rk,p}$	
Splitting failure	spacing	Scr,sp	[mm]	180	200	
<u> </u>	edge distance	Ccr,sp	[mm]	90	100	
Installation safety		γinst	[-]	1,2	1,2	
Concrete pryout	failure					
Factor for pry-out failure		k 8	[-]	1,	0	
Installation factor		γinst	[-]	1,	0	
Concrete edge fa	ailure					
Effective length in		$I_f = h_{ef}$	[mm]	27,3	44,3	
Nominal outer dia		d _{nom}	[mm]	(·	
Installation safety		γinst	[-]	1,	0	

SPIT TAPCON 5 XTREM	
Performances in concrete Characteristic values for static and quasi-static loading	Annex C1

Table C2: Characteristic values of resistance in precast prestressed hollow core slabs C45/55 to C50/60

Fastener size TAPCON 5 XTREM HFL / DOME / ROD			6
Bottom flange thickness	dь	[mm]	≥ 25
Characteristic resistance	F ⁰ Rk	[kN]	2,5
Spacing and edge distance	Scr	[mm]	200
	Ccr	[mm]	100
Installation safety factor	γinst	[-]	1,2

SPIT TAPCON 5 XTREM	
Performances in precast prestressed hollow core slabs Characteristic values for static and quasi-static loading	Annex C2

Table C3: Fire exposure – characteristic values of resistance in concrete

Fastener size TAPCON 5 XTREM				6	3	
Naminal ambades and denth			h _{nom}	h _{nom1}	h _{nom2}	
Nominal embedment depth		[mm]	35	55		
Steel failure for tension	and she	ar load				
Characteristic resistance	R30	N _{Rk,s,fi30}	[kN]	1,00	1,50	
	R60	N _{Rk,s,fi60}	[kN]	1,00	1,28	
	R90	N _{Rk,s,fi90}	[kN]	0,70	0,84	
	R120	N _{Rk,s,fi120}	[kN]	0,54	0,62	
	R30	$V_{Rk,s,fi30}$	[kN]	1,00	1,50	
	R60	$V_{Rk,s,fi60}$	[kN]	1,00	1,28	
	R90	$V_{Rk,s,fi90}$	[kN]	0,70	0,84	
	R120	V _{Rk,s,fi120}	[kN]	0,54	0,62	
	R30	M ⁰ _{Rk,s,fi30}	[kNm]	0,76	1,14	
	R60	M ⁰ _{Rk,s,fi60}	[kNm]	0,76	0,97	
	R90	M ⁰ _{Rk,s,fi90}	[kNm]	0,53	0,64	
	R120	M ⁰ _{Rk,s,fi120}	[kNm]	0,41	0,47	
Pull-out failure						
Characteristic	R30-90	N _{Rk,p,fi}	[kN]	0,60	1,4	
resistance	R120	$N_{Rk,p,fi}$	[kN]	0,50	1,1	
Concrete cone failure						
Characteristic	R30-90	$N_{Rk,c,fi}$	[kN]	1,2	2,9	
resistance	R120	N _{Rk,c,fi}	[kN]	1,0	2,3	
Edge distance			•			
R30 - R120		$C_{cr,N,fi}$	[mm]	2 x h _{ef}		
In case of fire attack from	n more tha	an one side,	the mir	nimum edge distance	shall be ≥300mm.	
Spacing distance		ı				
R30 - R120 S _{cr,N,fi}		[mm]	4 x h _{ef}			
Pryout failure						
R30 - R120		k ₈	[-]	1,0	1,0	
Characteristic	R30-90	$V_{Rk,cp,fi}$	[kN]	1,2	2,9	
resistance	R120	$V_{Rk,cp,fi}$	[kN]	1,0	2,3	
The anchorage depth has the given value.	s to be inc	creased for v	wet con	crete by at least 30 m	nm compared to	

Fire exposure in concrete

Characteristic values of resistance

Annex C3

Table C4: Fire exposure – characteristic values of resistance in hollow concrete slab

Fastener size TAPCON 5 XTREM	6					
Bottom flange thickness	≥ 25					
Steel failure for tension and shear load						
Characteristic resistance	R30	F _{Rk,s,fi30}	[kN]	0,72		
	R60	F _{Rk,s,fi60}	[kN]	0,62		
	R90	F _{Rk,s,fi90}	[kN]	0,53		
	R120	F _{Rk,s,fi120}	[kN]	0,48		
	R30	$M^0_{Rk,s,fi30}$	[kNm]	0,54		
	R60	$M^0_{Rk,s,fi60}$	[kNm]	0,47		
	R90	$M^0_{Rk,s,fi90}$	[kNm]	0,40		
	R120	$M^0_{Rk,s,fi120}$	[kNm]	0,36		
Pull-out failure						
Characteristic resistance	R30-90	$F_{Rk,p,fi}$	[kN]	0,60		
	R120	$F_{Rk,p,fi}$	[kN]	0,50		
Spacing and distance edge						
Spacing	R30-R120	$S_{cr,N,fi}$	[mm]	200		
Edge distance	R30-R120	$C_{cr,N,fi}$	[mm]	100		

SPIT TAPCON 5 XTREM			
Fire exposure in precast prestressed hollow core slabs Characteristic values of resistance	Annex C4		